`

Data Encryption Standard(DES) 数据加密标准算法描述

阅读更多
Data Encryption Standard(DES) 数据加密标准算法描述
一、算法介绍
DES算法是一种用56位密钥来加密64位数据的对称密钥算法。
DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;
Mode为DES的工作方式,有两种:加密或解密。
二、实现步骤
1.变换密钥
A 将8字节密钥转换为64字节字串,不足则补0(或自定义)
B 根据pc1进行变换成56字节
C 将56字节密钥分为左右两部分C[0],D[0]
D 循环16次(i从1开始)
{
1)左移固定位数得到C[i]和D[i];
2)将C[i]D[i]用pc2化简为48位k[i];
}
2.数据处理
A 将8字节数据转换为64字节字串,不足则补0(或自定义)
B 将64字节数据转换为两部分L[0],R[0]
C 循环16次(i从1开始),用密钥加密数据
{
1)将32位的R[i-1]按exp扩展为48位的E[i-1];
2)异或E[i-1]和K[i];
3)将异或结果分为8个6位长的部分B[8]
4)循环用S表替换(j从1开始)
{
a)B[j]第1位和第6位组合为M,作为S[j]的行号
b)B[j]第2到5位组合为N,作为S[j]的列号
c)用S[j][M][N]来取代B[j]
}
5)将B[1]到B[8]按P组合得到p
6)R[i] = p xor L[i-1];
7)L[i] = R[i-1];
}
3.组合变换后的R[16]L[16]按ip_1变换得到最后结果
三、注意事项
1. DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14......,最后一次用K0,算法本身并没有任何变化.
2. 在DES密钥Key的使用、管理及密钥更换的过程中,应绝对避开DES 算法的应用误区,即:绝对不能把Key的第8,16,24......64位作为有效数据位来对Key进行管理
四、实现源码
int DES(
unsigned char *bufferin,
unsigned char *bufferout,
unsigned char *key,
long mode)
{
//密钥变换为56字节(去掉校验位)
static unsigned char pc1[56] = {
56, 48, 40, 32, 24, 16, 8,
0, 57, 49, 41, 33, 25, 17,
9, 1, 58, 50, 42, 34, 26,
18, 10, 2, 59, 51, 43, 35,
62, 54, 46, 38, 30, 22, 14,
6, 61, 53, 45, 37, 29, 21,
13, 5, 60, 52, 44, 36, 28,
20, 12, 4, 27, 19, 11, 3 };
//56字节变换为48 字节(数据压缩)
static unsigned char pc2[48] = {
13, 16, 10, 23, 0, 4,
2, 27, 14, 5, 20, 9,
22, 18, 11, 3, 25, 7,
15, 6, 26, 19, 12, 1,
40, 51, 30, 36, 46, 54,
29, 39, 50, 44, 32, 47,
43, 48, 38, 55, 33, 52,
45, 41, 49, 35, 28, 31 };
//32字节变换为48字节(数据扩展)
static unsigned char exp[48] = {
31, 0, 1, 2, 3, 4,
3, 4, 5, 6, 7, 8,
7, 8, 9, 10, 11, 12,
11, 12, 13, 14, 15, 16,
15, 16, 17, 18, 19, 20,
19, 20, 21, 22, 23, 24,
23, 24, 25, 26, 27, 28,
27, 28, 29, 30, 31, 0 };
//64位数据IP(Initial Permutation)变换表
static unsigned char ip[64] = {
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7,
56, 48, 40, 32, 24, 16, 8, 0,
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6 };
//数据逆置换(Final Permutation)
static unsigned char ip_1[64] = {
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25,
32, 0, 40, 8, 48, 16, 56, 24 };
//Permutation P
static unsigned char pp[32] = {
15, 6, 19, 20,
28, 11, 27, 16,
0, 14, 22, 25,
4, 17, 30, 9,
1, 7, 23, 13,
31, 26, 2, 8,
18, 12, 29, 5,
21, 10, 3, 24 };
/* INITIALIZE THE TABLES */
/* Table - s1 */
static unsigned char s1[4][16] = {
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 };
/* Table - s2 */
static unsigned char s2[4][16] = {
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 };
/* Table - s3 */
static unsigned char s3[4][16] = {
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 };
/* Table - s4 */
static unsigned char s4[4][16] = {
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 };
/* Table - s5 */
static unsigned char s5[4][16] = {
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 };
/* Table - s6 */
static unsigned char s6[4][16] = {
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 };
/* Table - s7 */
static unsigned char s7[4][16] = {
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 };
/* Table - s8 */
static unsigned char s8[4][16] = {
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 };
/* 密钥生成中的循环左移位的累计次数*/
static unsigned char totrot[] = {
1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 };
/*----------------------------------------------*/
//long mode = 1; //模式,1:加密,2:解密
//unsigned char bufferin[9], bufferout[9];//明文,密文
/*----------------------------------------------*/
long i, j, k;
long rotshift; //密钥移位次数
//long keylen, buflen; //密钥长度,明文长度
unsigned char keybuf[65]; //密钥,密钥64字节缓冲区
unsigned char keyreal[57], keys[17][49]; //实际使用56字节密钥,48字节密钥数组
unsigned char srcbuf[65], dstbuf[65]; //明文,密文64字节缓冲区
unsigned char L[17][33], R[17][33], LR[65], RL[65];//加密时临时数据左右两部分
unsigned char E[17][49]; //R数组的扩展数据
unsigned char B[9][7], BB[33], P[33]; //E和K异或后的缓冲数组
unsigned char C[17][29], D[17][29], CD[57]; //56字节密钥的左右两部分
unsigned char temp1, temp2, m, n, x;
//1.变换密钥
//密钥不足8字节则用0补足(或自定义)
//keylen = strlen((const char*)key);
//if(keylen<8)
// memset(key+keylen, 0, (8-keylen));
//将8字节密钥转换为64字节字串
for(i=0;i<8;i++)
{
j = *(key+i);
keybuf[8*i] = (j / 128) % 2;
keybuf[8*i+1] = (j / 64) % 2;
keybuf[8*i+2] = (j / 32) % 2;
keybuf[8*i+3] = (j / 16) % 2;
keybuf[8*i+4] = (j / 8) % 2;
keybuf[8*i+5] = (j / 4) % 2;
keybuf[8*i+6] = (j / 2) % 2;
keybuf[8*i+7] = (j / 1) % 2;
}
//根据pc1进行变换成56字节,去掉奇偶校验位
for(i=0;i<56;i++)
{
keyreal[i] = keybuf[pc1[i]];
}
//将56字节密钥分为左右两部分C[0],D[0]
for(i=0;i<28;i++)
{
C[0][i] = keyreal[i];
D[0][i] = keyreal[i+28];
}
//循环16次(i从1开始)
for(i=1;i<17;i++)
{
//根据加密或解密确定密钥顺序
if(mode)//加密
rotshift = totrot[i-1];
else//解密
rotshift = totrot[16-i];
//1)左移固定位数得到C[i]和D[i];
for(j=0;j<28;j++)
{
C[i][j] = C[0][j];
D[i][j] = D[0][j];
}
for(j=0;j<rotshift;j++)
{
temp1 = C[i][0];
temp2 = D[i][0];
for(k=0;k<27;k++)
{
C[i][k] = C[i][k+1];
D[i][k] = D[i][k+1];
}
C[i][27] = temp1;
D[i][27] = temp2;
}
//2)将C[i]D[i]用pc2化简为48位k[i];
for(j=0;j<28;j++)
{
CD[j] = C[i][j];
CD[j+28] = D[i][j];
}
for(j=0;j<48;j++)
{
keys[i][j] = CD[pc2[j]];
}
}
//2.数据处理
//若明文不足8字节则补0(或自定义)
//buflen = strlen((const char*)bufferin);
//if(buflen<8)
// memset(bufferin+buflen, 0, (8-buflen));
//将8字节数据转换为64字节字串
for(i=0;i<8;i++)
{
j = *(bufferin+i);
srcbuf[i*8] = (j / 128) % 2;
srcbuf[i*8+1] = (j / 64) % 2;
srcbuf[i*8+2] = (j / 32) % 2;
srcbuf[i*8+3] = (j / 16) % 2;
srcbuf[i*8+4] = (j / 8) % 2;
srcbuf[i*8+5] = (j / 4) % 2;
srcbuf[i*8+6] = (j / 2) % 2;
srcbuf[i*8+7] = (j / 1) % 2;
}
//将srcbuf按ip进行变换
for(i=0;i<64;i++)
LR[i] = srcbuf[ip[i]];
//将64字节数据转换为两部分L[0],R[0]
for(i=0;i<32;i++)
{
L[0][i] = LR[i];
R[0][i] = LR[i+32];
}
//循环16次(i从1开始),用密钥加密数据
for(i=1;i<17;i++)
{
//1)将32位的R[i-1]按exp扩展为48位的E[i-1];
for(j=0;j<48;j++)
{
E[i-1][j] = R[i-1][exp[j]];
}
//2)异或E[i-1]和K[i];
for(j=0;j<48;j++)
{
keys[i][j] = keys[i][j] ^ E[i-1][j];
}
//3)将异或结果分为8个6位长的部分B[8]
for(j=0;j<8;j++)
{
B[j][0] = keys[i][j*6];
B[j][1] = keys[i][j*6+1];
B[j][2] = keys[i][j*6+2];
B[j][3] = keys[i][j*6+3];
B[j][4] = keys[i][j*6+4];
B[j][5] = keys[i][j*6+5];
}
//4)循环用S表替换(j从1开始)
for(j=0;j<8;j++)
{
//a)B[j]第1位和第6位组合为M,作为S[j]的行号
m = 2 * B[j][0] + B[j][5];
//b)B[j]第2到5位组合为N,作为S[j]的列号
n = 2 * (2 * (2 * B[j][1] + B[j][2]) + B[j][3]) + B[j][4];
//c)用S[j][M][N]来取代B[j]
switch(j)
{
case 0:
x = s1[m][n];
break;
case 1:
x = s2[m][n];
break;
case 2:
x = s3[m][n];
break;
case 3:
x = s4[m][n];
break;
case 4:
x = s5[m][n];
break;
case 5:
x = s6[m][n];
break;
case 6:
x = s7[m][n];
break;
case 7:
x = s8[m][n];
break;
}
BB[j*4] = (x / 8) % 2;
BB[j*4 + 1] = (x / 4) % 2;
BB[j*4 + 2] = (x / 2) % 2;
BB[j*4 + 3] = (x / 1) % 2;
}
//5)将B[1]到B[8]按P组合得到p
for(j=0;j<32;j++)
{
P[j] = BB[pp[j]];
}
//6)R[i] = p xor L[i-1];L[i] = R[i-1];
for(j=0;j<32;j++)
{
R[i][j] = P[j] ^ L[i-1][j];
L[i][j] = R[i-1][j];
}
}
//3.组合变换后的R[16]L[16]按ip_1变换得到最后结果
for(i=0;i<32;i++)
{
RL[i] = R[16][i];
RL[i+32] = L[16][i];
}
for(i=0;i<64;i++)
{
dstbuf[i] = RL[ip_1[i]];
}
//将64字节数据转换为8字节
for (i = 0; i < 8; i++)
{
*(bufferout + i) = 0x00;
for (k = 0; k < 7; k++)
*(bufferout + i) = ((*(bufferout + i)) + dstbuf[8*i+k]) * 2;
*(bufferout + i) = *(bufferout + i) + dstbuf[8*i+7];
}
return 0;
}
分享到:
评论

相关推荐

    DES data encryption standard

    DES data encryption standard数据加密算法。DES算法。

    DES加密算法C语言代码实现

    DES的英文全称是Data Encryption Standard,意思是数据加密标准。而我们本篇文章讨论的是DES的加密算法。希望大家能够将这两个名词区别开来,很多时候我们说的DES都是在指DES算法,而不是DES数据加密标准。DES算法是...

    AES/DES 对称加密算法

    DES、AES对称加密算法,之前从网上找的,但是在MAC上运行发现每次加密出来的结果都不一样,后来查了一些博客,最后确认是SecureRandom的随机算法问题,需要设置setSeed.

    DES算法& AES算法.ppt

    DES算法:DES( Data Encryption Standard)——数据加密标准 密码学历史上影响重大,应用最广的数据加密算法,是对称密码体制的。 AES算法 1、征集 1977年颁布的数据加密标准DES算法,56位长的密码空间在芯片技术和...

    DES加密解密

    随着信息技术的快速发展,网络成为了人们生活中不可缺少的一部分,网络安全问题也渐入人们视线。...本文将对DES (Data Encryption Standard) 数据加密标准进行如何加密以及如何解密进行详细的介绍。

    Data_Encryption_Standard.zip

    DES加密算法 Matlab程序 加密算法 信息安全 近代加密算法 算法简介 可读性高 实现了数据加密算法。DES算法为密码体制中的对称密码体制。需要加密的明文按64位进行分组,加密密钥是根据用户输入的秘钥生成的,密钥长...

    3个著名加密算法(MD5、RSA、DES)的解析

    美国国家标准局1973年开始研究除国防部外的其它部门的计算机系统的数据加密标准,于1973年5月15日和1974年8月27日先后两次向公众发出了征求加密算法的公告。 1977年1月,美国政府颁布:采纳IBM公司设计的方案作为非...

    DES对称加密算法(密码学)

    DES( Data Encryption Standard)算法,于1977年得到美国政府的正式许可,是一种用56位密钥来加密64位数据的方法。

    加密解密算法的C++实现.doc

    DES是Data Encryption Standard(数据加密标准)的缩写。1974年,IBM向NBS提交了由Tuchman博士领导的小组设计并经改造的Luciffer算法。NSA(美国国家安全局)组织专家对该算法进行了鉴定,使其成为DES的基础。 1975...

    DES_加密解密算法的C++实现--实验报告

    1977年1月,美国政府颁布:采纳IBM公司设计的方案作为非机密数据的正式数据加密标准(DES枣Data Encryption Standard)。 目前在这里,随着三金工程尤其是金卡工程的启动,DES算法在POS、ATM、磁卡及智能卡(IC卡...

    DES加密算法

    1977年1月,美国政府颁布:采用IBM公司1971年设计出的一个加密算法作为非机密数据的正式数据加密标准(DES : Data Encryption Standard)。DES广泛应用于商用数据加密,算法完全公开,这在密码学史上是一个创举[2]。...

    DES加密C++代码,

    DES加密C++代码,直接可以运行,供大家参考

    实验一 基于DES加密的TCP聊天程序1

    第3章 基于 DES 加密的 TCP 聊天程序3.1 本章训练目的与要求DES(Data Encryption Standard)算法是一种用 56 位有效密钥

    des加密原理

    数据加密标准DES(Data Encryption Standard)算法是一个分组加密算法,也是一个对称算法,加密和解密使用同一个算法,利用传统的换位、异或、置换等加密方法。DES算法以64位(8 byte)为分组对数据加密,其中有8位...

    三重DES算法工作原理及其概要说明

    数据加密算法(Data Encryption Algorithm,DEA)的数据加密标准(Data Encryption Standard,DES)是规范的描述

    如何实现DES算法

    DES( Data Encryption Standard)算法,于1977年得到美国政府的正式许可,是一种用56位密钥来加密64位数据的方法。DES算法以被应用于许多需要安全加密的场合。(如:UNIX的密码算法就是以DES算法为基础的)。下面是...

    Java DES加解密算法

    Java DES加解密算法 DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块

    des加密算法

    The Data Encryption Standard (DES) algorithm, adopted by the U.S. government in 1977, is a block cipher that transforms 64-bit data blocks under a 56-bit secret key, by means of permutation and ...

    DES加密c++编写

    DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法,...需要注意的是,在某些文献中,作为算法的DES称为数据加密算法(Data Encryption Algorithm,DEA),已与作为标准的DES区分开来。

    Java常见加密技术全景展示_附Java代码实现

    ● DES(Data Encryption Standard,数据加密算法) ● PBE(Password-based encryption,基于密码验证) ● RSA(算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman) ● DH(Diffie-Hellman...

Global site tag (gtag.js) - Google Analytics