`

C语言的底层操作

 
阅读更多
C语言的底层操作
概述
  C语言的内存模型基本上对应了现在von Neumann(冯·诺伊曼)计算机的实际存储模型很好的达到了对机器的映射,这是C/C++适合做底层开发的主要原因,另外,C语言适合做底层开发还有另外一个原因,那就是C语言对底层操作做了很多的的支持,提供了很多比较底层的功能。
  下面结合问题分别进行阐述。
  问题:移位操作
  在运用移位操作符时,有两个问题必须要清楚:
  (1)、在右移操作中,腾空位是填 0 还是符号位;
  (2)、什么数可以作移位的位数。
答案与分析:
  ">>"和"<<"是指将变量中的每一位向右或向左移动, 其通常形式为:
  右移: 变量名>>移位的位数
  左移: 变量名<<移位的位数
  经过移位后, 一端的位被"挤掉",而另一端空出的位以0 填补,在C语言中的移位不是循环移动的。
  (1) 第一个问题的答案很简单,但要根据不同的情况而定。如果被移位的是无符号数,则填 0 。如果是有符号数,那么可能填 0 或符号位。如果你想解决右移操作中腾空位的填充问题,就把变量声明为无符号型,这样腾空位会被置 0。

  (2) 第二个问题的答案也很简单:如果移动 n 位,那么移位的位数要不小于 0 ,并且一定要小于 n 。这样就不会在一次操作中把所有数据都移走。

  比如,如果整型数据占 32 位,n 是一整型数据,则 n << 31 和 n << 0 都合法,而 n << 32 和 n << -1 都不合法。

  注意即使腾空位填符号位,有符号整数的右移也不相当与除以。为了证明这一点,我们可以想一下 -1 >> 1 不可能为 0 。

  问题:位段结构

struct RPR_ATD_TLV_HEADER
{
ULONG res1:6;
ULONG type:10;
ULONG res1:6;
ULONG length:10;
};

  位段结构是一种特殊的结构, 在需按位访问一个字节或字的多个位时, 位结构比按位运算符更加方便。

  位结构定义的一般形式为:

struct位结构名{
 数据类型 变量名: 整型常数;
 数据类型 变量名: 整型常数;
} 位结构变量;

  其中: 整型常数必须是非负的整数, 范围是0~15, 表示二进制位的个数, 即表示有多少位。

  变量名是选择项, 可以不命名, 这样规定是为了排列需要。

  例如: 下面定义了一个位结构。

struct{
 unsigned incon: 8; /*incon占用低字节的0~7共8位*/
 unsigned txcolor: 4;/*txcolor占用高字节的0~3位共4位*/
 unsigned bgcolor: 3;/*bgcolor占用高字节的4~6位共3位*/
 unsigned blink: 1; /*blink占用高字节的第7位*/
}ch;

  位结构成员的访问与结构成员的访问相同。

  例如: 访问上例位结构中的bgcolor成员可写成:

ch.bgcolor

  位结构成员可以与其它结构成员一起使用。按位访问与设置,方便&节省

  例如:

struct info{
 char name[8];
 int age;
 struct addr address;
 float pay;
 unsigned state: 1;
 unsigned pay: 1;
}workers;'

  上例的结构定义了关于一个工从的信息。其中有两个位结构成员, 每个位结构成员只有一位, 因此只占一个字节但保存了两个信息, 该字节中第一位表示工人的状态, 第二位表示工资是否已发放。由此可见使用位结构可以节省存贮空间。

  注意不要超过值限制

  问题:字节对齐

  我在使用VC编程的过程中,有一次调用DLL中定义的结构时,发觉结构都乱掉了,完全不能读取正确的值,后来发现这是因为DLL和调用程序使用的字节对齐选项不同,那么我想问一下,字节对齐究竟是怎么一回事?

  答案与分析:

  关于字节对齐:

  1、 当不同的结构使用不同的字节对齐定义时,可能导致它们之间交互变得很困难。

  2、 在跨CPU进行通信时,可以使用字节对齐来保证唯一性,诸如通讯协议、写驱动程序时候寄存器的结构等。

  三种对齐方式:

  1、 自然对齐方式(Natural Alignment):与该数据类型的大小相等。

  2、 指定对齐方式 :

#pragma pack(8) //指定Align为 8;
#pragma pack() //恢复到原先值

  3、 实际对齐方式:

Actual Align = min ( Order Align, Natual Align )

  对于复杂数据类型(比如结构等):实际对齐方式是其成员最大的实际对齐方式:

Actual Align = max( Actual align1,2,3,…)

  编译器的填充规律:

  1、 成员为成员Actual Align的整数倍,在前面加Padding。

  成员Actual Align = min( 结构Actual Align,设定对齐方式)

  2、 结构为结构Actual Align的整数倍,在后面加Padding.

  例子分析:

#pragma pack(8) //指定Align为 8
struct STest1
{
char ch1;
long lo1;
char ch2;
} test1;
#pragma pack()

  现在

Align of STest1 = 4 , sizeof STest1 = 12 ( 4 * 3 )

  test1在内存中的排列如下( FF 为 padding ):

00 -- -- -- 04 -- -- -- 08 -- -- -- 12 -- -- --
01 FF FF FF 01 01 01 01 01 FF FF FF
ch1 -- lo1 -- ch2
#pragma pack(2) //指定Align为 2
struct STest2
{
char ch3;
STest1 test;
} test2;
#pragma pack()

  现在 Align of STest1 = 2, Align of STest2 = 2 , sizeof STest2 = 14 ( 7 * 2 )

  test2在内存中的排列如下:

00 -- -- -- 04 -- -- -- 08 -- -- -- 12 -- -- --
02 FF 01 FF FF FF 01 01 01 01 01 FF FF FF
ch3 ch1 -- lo1 -- ch2

  注意事项:

  1、 这样一来,编译器无法为特定平台做优化,如果效率非常重要,就尽量不要使用#pragma pack,如果必须使用,也最好仅在需要的地方进行设置。

  2、需要加pack的地方一定要在定义结构的头文件中加,不要依赖命令行选项,因为如果很多人使用该头文件,并不是每个人都知道应该pack。这特别表现在为别人开发库文件时,如果一个库函数使用了struct作为其参数,当调用者与库文件开发者使用不同的pack时,就会造成错误,而且该类错误很不好查。

  3、 在VC及BC提供的头文件中,除了能正好对齐在四字节上的结构外,都加了pack,否则我们编的Windows程序哪一个也不会正常运行。

  4、 在 #pragma pack(n) 后一定不要include其他头文件,若包含的头文件中改变了align值,将产生非预期结果。

  5、 不要多人同时定义一个数据结构。这样可以保证一致的pack值。

  问题:按位运算符

  C语言和其它高级语言不同的是它完全支持按位运算符。这与汇编语言的位操作有些相似。 C中按位运算符列出如下:

━━━━━━━━━━━━━━━━━━━━━━━━━━━━
操作符 作用
────────────────────────────
& 位逻辑与
| 位逻辑或
^ 位逻辑异或
- 位逻辑反
>> 右移
<< 左移
━━━━━━━━━━━━━━━━━━━━━━━━━━━━

  注意:

  1、 按位运算是对字节或字中的实际位进行检测、设置或移位, 它只适用于字符型和整数型变量以及它们的变体, 对其它数据类型不适用。

  2、 关系运算和逻辑运算表达式的结果只能是1或0。 而按位运算的结果可以取0或1以外的值。要注意区别按位运算符和逻辑运算符的不同, 例如, 若x=7, 则x&&8 的值为真(两个非零值相与仍为非零), 而x&8的值为0。

  3、 | 与 ||,&与&&,~与! 的关系

  &、| 和 ~ 操作符把它们的操作数当作一个为序列,按位单独进行操作。比如:10 & 12 = 8,这是因为"&"操作符把 10 和 12 当作二进制描述 1010 和 1100 ,所以只有当两个操作数的相同位同时为 1 时,产生的结果中相应位才为 1 。同理,10 | 12 = 14 ( 1110 ),通过补码运算,~10 = -11 ( 11...110101 )。<以多少为一个位序列>

&&、|| 和!操作符把它们的操作数当作"真"或"假",并且用 0 代表"假",任何非 0 值被认为是"真"。它们返回 1 代表"真",0 代表"假",对于"&&"和"||"操作符,如果左侧的操作数的值就可以决定表达式的值,它们根本就不去计算右侧的操作数。所以,!10 是 0 ,因为 10 非 0 ;10 && 12 是 1 ,因为 10 和 12 均非 0 ;10 || 12也是 1 ,因为 10 非 0 。并且,在最后一个表达式中,12 根本就没被计算,在表达式 10 || f( ) 中也是如此。

分享到:
评论

相关推荐

    c语言底层操作 内存 指针

    c语言的相关技术 c底层操作 指针 数组 函数 结构体

    C语言之C语言底层操作

    一份比较优秀的资料,应该很多人挺适合看看的,自己也要好好学习下

    C语言之C的底层操作

    C语言之C的底层操作:如果你是做嵌入式軟件的,用的是C那么這篇文章一定能幫助你更好的理解C的底層操作。

    水滴石穿C语言之C语言的底层操作.doc

    水滴石穿C语言之C语言的底层操作.doc水滴石穿C语言之C语言的底层操作.doc

    水滴石穿C语言之C语言的底层操作

    诺伊曼)计算机的实际存储模型,很好的达到了对机器的映射,这是C/C++适合做底层开发的主要原因,另外,C语言适合做底层开发还有另外一个原因,那就是C语言对底层操作做了很多的的支持,提供了很多比较底层的功能。

    C语言的底层操作支持

    C语言的内存模型基本上对应了现在von Neumann(冯•诺伊曼)计算机的实际存储模型,很好的达到了对机器的映射,这是C/C++适合做底层开发的主要原因,另外,C语言适合做底层开发还有另外一个原因,那就是C语言对底层操作做了...

    C底层编程(C语言对底层操作做了很多的的支持,提供了很多比较底层的功能)

    诺伊曼)计算机的实际存储模型,很好的达到了对机器的映射,这是C/C++适合做底层开发的主要原因,另外,C语言适合做底层开发还有另外一个原因,那就是C语言对底层操作做了很多的的支持,提供了很多比较底层的功能。

    C语言在哪些领域适合开发源码?C语言在操作系统和软件开发中的作用解析.docx

    因为C语言具有底层的硬件控制和高效的性能特征,所以C语言可以用于编写操作系统内核,如Linux、Windows等。此外,C语言还可以用于编写各种系统软件,如编译器、解释器、数据库管理系统、网络协议等。 应用软件是...

    C语言水滴石穿系列文章

    6、水滴石穿之C语言的底层操作 7、水滴石穿C语言之内存使用 8、水滴石穿C语言之可变参数问题 9、水滴石穿C语言之代码检查工具 10、水滴石穿C语言之声明的语法 11、水滴石穿C语言之extern声明辨析 12、水滴石穿C语言...

    关于C语言的底层操作问题

    诺伊曼)计算机的实际存储模型,很好的达到了对机器的映射,这是C/C++适合做底层开发的主要原因,另外,C语言适合做底层开发还有另外一个原因,那就是C语言对底层操作做了很多的的支持,提供了很多比较底层的功能。...

    iOS通讯录访问操作封装,全部封装为objective-c对象,不用再使用底层的C语言操作通讯录了.zip

    iOS通讯录访问操作封装,全部封装为objective-c对象,不用再使用底层的C语言操作通讯录了

    C语言安装教程的深入分析和C语言的特点介绍.docx

    第三,C语言支持底层编程,能够直接操作内存和硬件。这使得C语言成为编写操作系统和嵌入式系统的理想语言。C语言的底层编程支持,允许程序员直接访问内存和硬件,这使得C语言非常适合编写系统级软件。 其四,C语言...

    C语言的发展史

    如果把程序语言的应用领域从硬件到管理软件、Web程序做一个很粗略从下到上的排列,C语言适合领域是比较底层靠近硬件的部分,而新兴语言比较偏重于高层管理或者Web开发这种相对贴近最终用户的领域。比较流行的混合...

    水滴石穿c语言-pdf格式

    水滴石穿C语言之C语言的底层操作.pdf 水滴石穿C语言之extern声明辨.pdf 水滴石穿C语言之static辨析.pdf 水滴石穿C语言之编译器引出的.pdf 水滴石穿C语言之代码检查工具.pdf 水滴石穿C语言之可变参数问.pdf 水滴石穿...

    C语言入门程序设计教程

     C语言已经深深的进入各种操作系统,通过对C语言的学习,能够很快的掌握操作系统的底层结构和操作方式,因此C语言是学习编程的首选语言。为满足广大读者的要求,本期专题特别推出C语言初级教程。

Global site tag (gtag.js) - Google Analytics