`

Android Camera Framework Stream

 
阅读更多

现在我们尝试从最开始的启动流程来熟悉android camera的整体framework流程:

首先从上图的各个步骤来逐一分析流程,后续会根据具体的一些点进行内容的添加和扩充:

? Camera.java
packages/apps/camera/src/com/android/

最上层的应用就是从这个文件开始。

该文件集中了整个android上层应用的所有相关内容,当然更多的则为界面的代码实现。

如果出现了camera应用界面的问题(当然除了camera拍摄区域内容外),可以从android的代码入手。

? Camera.java
frameworks\base\core\java\android\hardware\
该文件中主要是对native函数接口的调用,当然也包括一些本地的函数实现。
也可以认为该文件是实现了从java层调用c++层代码函数接口。

也就是我们需要去了解的一点JNI机制。

? android_hardware_Camera.cpp
该文件就是JNIc++层的代码实现。
通过camera的类实例来调用camera类的相关接口。

? Camera.cpp/Camera.h
对于上层应用来说,camera.cpp是最为直接的函数调用和实现。
继承于ICameraClient,典型的Client端的接口实例。

? BnCameraClient/BpCameraClient
IPC
通讯所需的函数接口实现,继承于ICameraClient类。

? ICameraClient.cpp/ICameraClient.h
Client/Service
模式下的Client端实现

? ICameraService.cpp/ICameraService.h

Client/Service模式下service端实现

? BnCameraService/BpCameraService

IPC通讯所需的函数接口实现,继承于ICameraService类。

? CameraService.cpp/CameraService.h

继承于BnCameraService类。

是对BnCameraService函数接口的实现,其本质也是对CameraService的内部类Client函数接口的调用。

? Client(CameraService内部类)

该类才是真正的底层函数实现,其通过openCameraHardware()得到camera硬件实例对象进行操作。

其继承于ICamera,是对ICamera类函数接口的实现。


接下来,我们通过对流程的步步分析来将camera整体串接起来:

1. 首先则看看camera.java onCreate函数入口,针对android的所有应用,onCreate函数入口作为跟踪和了解应用架构的首选。



CountDownLatch()关于这个类,可以简单的理解为它是用来线程之间的等待处理,当然这里采用的计数为1,则可以简单理解为一个计数开关来控制调用了tlatch.await()函数的进程,方式就是将devlatch的计数减为0(countDown() )

这里启动了一个线程用来打开camera服务,而打开过程则比较费时(一般在2s左右),故单独启用一个线程避免应用线程阻塞。



在这里,需要跟进ensureCameraDevice();该函数,可以看到其实现为:



下面大概介绍下我对CameraHolder的理解:

1CameraHoldermCameraDevice实例进行短暂的保留(keep()函数中可以设定这个保留时长,一般默认为3000ms),避免用户在短暂退出camera又重新进入时,缩短camera启动时长(正如之前所说,打开CameraDevice时间较长)

2CameraHolder并有一个关键的计数mUsers用来保证open()release()的配套调用,避免多次重复释放或者打开(上层应用的保护措施之一)

2. 第一步的完成,进而跳转到了android.hardware.Camera类中的open()函数接口调用。



静态函数,也就可以通过类名直接调用,open()函数中去创建一个Camera的实例。



Camera构造函数中有这个关键的一步,最开始的一些callback可以认为它们最终被底层调用到(至于具体流程后面会讲到)EventHandlerLooper我们暂时跳过,知道它是消息处理就行了。最后也就是最为关键的函数接口调用:native_setup



典型的native函数接口声明,说明并非camera类的本地函数实现,也就意味着会通过JNI(Java Native Interface)调用对用C++文件中的函数接口。

3. 通过代码搜索,或者如果你清楚JNI文件路径也可以去该路径下找。

其实这边有个小技巧,虽然不一定都通用,但可以试试看:

java类的package名往往可以作为寻找相应JNI文件的途径:

package android.hardware;

则就可以通过android.hardware.camera.cpp来寻找(其实还是归咎于android的规范命名规则)

跳转到android_hardware_Camera.cpp中寻找native_setup()所对应的JNI函数接口:


最终在AndroidRuntime.cpp中被调用:

REG_JNI(register_android_hardware_Camera),

说明如果我们自己要添加JNI接口实现的话,这些地方也需要添加相应的代码(具体在AndroidRuntime.cpp的细节我没深看,也不做介绍)

简单介绍:JNINativeMethod的第一个成员是一个字符串,表示了JAVA本地调用方法的名称,这个名称是在JAVA程序中调用的名称;第二个成员也是一个字符串,表示JAVA本地调用方法的参数和返回值;第三个成员是JAVA本地调用方法对应的C语言函数。

跟进观察android_hardware_Camera_native_setup()函数的实现:



初步可以认为Camera::connect()的函数调用时返回了一个Camera的实例对象。

4. 通过上述的跟进流程来到了针对上层应用而言最为直接的类:camera.cpp

Camera::connect函数的调用如下:


首先是创建一个camera对象实例,然后通过调用getCameraService()去取得ICameraService的服务实例:



这边就涉及到了ServiceManager()对服务的管理,在这之前Camera的服务已经注册到了ServiceManager中,我们可以通过服务字串(media.camera)来获得camera service(其本质得到的是CameraService的实例对象,虽然通过类型上溯转换成父类ICameraService,对ICameraService对象的函数调用本质是调用到了CameraService的函数实现)

在得到camera service后,返回之前的步骤:当得到的cscameraservice实例存在时,通过调用cs->connect(c)去得到ICamera实例,并赋值给了camera实例的一个类成员ICamera mCamera


5. 接下来则涉及到ICamraService的相关调用关系,其实这个地方需要去弄清楚一些函数接口的实现在具体哪些文件中,因为存在较多的虚函数。

继续流程,上一步走到了cs->connect(),也就是ICameraServiceconnect()函数接口。



可以发现该connect()接口为一个纯虚函数,需要ICameraService的子类对该接口进行实现,从而对connect()的调用则会映射到ICameraService子类的具体实现。

关于ICameraService的实例问题,目前暂时跳过(后面马上就会讲到),简单认为这个时候会调用到其一个子类的实现:



BpCameraService为代理类,其主要用途为Binder通讯机制即进程间的通讯(Client/Service),最终还是会调用BnCameraService的具体实现,即:



BnCameraService(为实现类)类继承于ICameraService,并且也并没有对connect()纯虚函数进行了实现,同样意味着其实该调用的实质是BnCameraService的子类实现。

毕竟虚函数的调用没有实例肯定是没有意义的,说明我们需要找到对connect()纯虚函数的实现子类即继承于BnCameraService

6. 结合上面所述,可以寻找到了继承于BnCameraService的子类CameraService.cpp

这时虽然找到了CameraService该类,但是你肯定会问到该类实例的创建在什么地方哪?再后头看CameraService启动注册的地方:



这个main函数位于main_mediaserver.cpp中,而mediaserver是在系统开始的时候就启动起来的server端(MediaServer,在系统启动时由init所启动,具可参考init.rc文件),进而将相关的服务也创建了实例。

跟进CameraService::instantiate()函数实现,可以发现:



创建了一个CameraService实例,并给定了CameraService的服务字串为”media.camera”,而之前在通过ServiceManager获取CameraService的时候,所调用的接口为binder = sm->getService(String16("media.camera"));,两者保持了一样的字符串。


结合上述分析,此处的binder对象其实为CameraService类实例(多态类型转换)

interface_cast<ICameraService>(binder)宏映射,需要展开:



INTERFACE::asInterface(obj);宏映射,继续展开可得:



(其上的宏展开都是在IMPLEMENT_META_INTERFACE(CameraService, "android.hardware.ICameraService");中实现的)

此处又创建了一个BpCameraService(new Bp##INTERFACE)对象并将binder对象(obj)传入到BpCameraService的构造函数中。

虽然获取的时候通过多态将CameraService实例转换成了BnCameraService也进一步解释了为什么ICameraService子类BnCameraservice中的connect函数实质会调用到CameraService中函数实现了。

于是就调用到了CameraServiceconnect函数接口:



创建了一个Client实例对象,并将该实例对象赋值给CameraSevice的类成员mClient,方便其实函数接口对Client的调用。

在这之前需要提及它的一个内部类Client,该类才是最为关键的函数实现,CameraService的一些接口都会调用到其Client实例的具体函数。


7. 那么现在的关键就是Client类了·进一步跟进:


cameraServicecameraClient的实例分别赋值给了Client的类成员变量。

另外openCameraHardware()是值得注意的地方,也就是连接上层应用和底层驱动的关键,通过调用openCameraHardware()得到了一个CameraHardwareInterface实例对象,并赋值给自己的类成员:`

sp<CameraHardwareInterface> mHardware;

hardware的操作就是通过该对象完成的,所以说真正意义上的功能实现其实就是在这里,即client类的函数接口调用。

对于hardware的东东咱们暂时不去关注吧。

那么我们再次仔细研究下Client类的继承关系(这些继承关系很容易混乱,涉及到较多的多态类型转换),这个其实往往都很关键:


Client继承于BnCamera,而BnCamera则继承于ICamera,也就是说Client继承了ICamera,实现了ICamera中的函数。

进而发现,原来绕一个大圈,把最开始的图简化下:


8. 除此之外还有两个步骤或许需要去研究下:

先从单一函数去跟进,看具体一些callback的实现流程:



这是Camera类中一个callback函数实现,但其本质在哪?先看camera类的继承关系:


通过以上的继承关系,继续跟进其父类ICameraClient:



其中notifyCallback()又是纯虚函数,则同样说明实现在其子类BpCameraClient中:



然后通过Binder通讯调用到BnCameraClient中实现:



进而调用到了Camera.cpp中的函数实现了,但或许你有疑问,这些callback是涉及到一些驱动的callback,哪怎么跟驱动联系起来那?

结合之前对hardware接口调用的类Client,进一步可以发现callback的处理同样是在Client类实例化的时候:



调用了mHardwarecallback传入,但此处的notifyCallback并不是camera.cpp中的函数,而是client类的notifyCallback函数。

再继续看client类中的notifyCallback函数实现:



通过得到ICameraClient实例进而调用到了具体的对象CameranotifyCallback()函数。这个地方估计会遇见跟ICameraService函数调用一样的问题,ICameraClient函数调用所需要的函数实例在哪?

记得上述ICameraService讲到的connect()函数嘛?其中有一个参数不能被忽略掉的,就是ICameraClient,但它在真正传入的时候却是一个ICameraClient子类camera的实例对象。

CameraService:


Client:


这样就清楚了,其实Client在调用设置callback的调用最终还是调用到了camera.cpp中的callback函数,进而将具体内容通过callback反馈给上层应用做出相应的处理。
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics